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Jitsi Meet
● Web Interface

– WebRTC
– React
– React Native

● Nginx



  

Jitsi Videobrigde (JVB)
● WebRTC compatible server designed to route 

video streams
● Multiplexer Audio/Video
●  DTLS-SRTP



  

Jitsi Conference Focus (Jicofo)

manages media sessions and acts as load 
balancer between each of the participants and 
the videobridge.



  

Prosody

● XMPP server used for signalling
● Authentication (local users)
● Plugins



  

Jitsi Gateway to SIP (jigasi)

server-side application that allows regular SIP 
clients to join Jitsi Meet conferences



  

Jitsi Broadcasting Infrastructure 
(jibri) 

set of tools for recording and/or streaming a 
Jitsi Meet conference that works by launching a 
Chrome instance rendered in a virtual 
framebuffer and capturing and encoding the 
output with ffmpeg.



  



  

Ports
● IN tcp/80
● IN tcp/443
● IN udp/10000
● OUT udp/443



  

Quick deploy
● Using docker-compose on 

https://github.com/jitsi/docker-jitsi-meet



  

Quicker deploy
● Ansible playbook doing everything for you:

https://git.lattuga.net/panda/jitsi-quick 
– Installs docker
– Installs and configures telegraf to send jitsi stats to influx
– Pulls non-test release of docker-jitsi-meet
– No-auth = public access
– Tested on debian11 & centos7



  

Tips & tricks
● Use the correct tag when pulling docker-jitsi-

meet: 
the default is the dev/test tag, you have to 
specify a release to use the stable one.



  

Using plugins (docker-compose)
● To add a plugin:

– In your env file add:
XMPP_MUC_MODULES=your_plugin_name

– Stop everything: docker-compose stop
– Chown 101 your plugin.lua and add it in .jitsi-meet-

cfg/prosody/prosody-plugins-custom/
– Start everything: docker-compose start



  

Quicker-deploy demo time?



  

Sizing
● For small videocalls (5ppl) you won’t need a big machine: 

1/2core 4gb ram
● Always consider the bandwidth
● Official guideline: https://jitsi.org/jitsi-videobridge-

performance-evaluation/ 
they say baremetal 2013 Xeon quad core and 16gb (?) of 
ram supports 1000 video streams at 550mbps and 20% 
cpu



  

Documentation
● It’s ok for easy deployments
● It’s lacking for more complex ones
● The last changes are more commonly found in 

forum posts instead of official docs



  

Relays (aka secure octo)
● Cascading bridges
● use ICE and DTLS/SRTP between each pair of 

bridges, so a secure network is not required. It 
uses and requires colibri websockets for the 
bridge-bridge connections 



  

● org.jitsi.videobridge.ENABLE_STATISTICS=true
● org.jitsi.videobridge.STATISTICS_TRANSPORT=muc
● org.jitsi.videobridge.STATISTICS_INTERVAL=5000
● org.jitsi.videobridge.xmpp.user.shard.HOSTNAME=videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.DOMAIN=auth.videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.USERNAME=jvb
● org.jitsi.videobridge.xmpp.user.shard.PASSWORD=vT477ggYHYU
● org.jitsi.videobridge.xmpp.user.shard.MUC_JIDS=JvbBrewery@internal.auth.videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.MUC_NICKNAME=d4393752-0bd2-4273-ba7c-03a31d50c05a
● org.jitsi.videobridge.xmpp.user.shard.DISABLE_CERTIFICATE_VERIFICATION=true
● org.jitsi.videobridge.rest.jetty.port=9090
● org.jitsi.videobridge.rest.COLIBRI_WS_TLS=true
● org.jitsi.videobridge.rest.COLIBRI_WS_DOMAIN=videocitofono.bida.im:443

/etc/jitsi/videobridge/sip-communicator.properties



  

Split Strategy

● SingleBridgeSelectionStrategy: Use the least loaded bridge, do not split a 
conference between bridges (Octo).

● SplitBridgeSelectionStrategy: Use a separate bridge for each participant 
(for testing).

● RegionBasedBridgeSelectionStrategy: Attempt to put each participant in a 
bridge in their local region (i.e. use Octo for geo-location).

● IntraRegionBridgeSelectionStrategy: Use additional bridges when a 
bridge becomes overloaded (i.e. use Octo for load balancing).



  

Load average
●  max-bridge-participants = -1
●     // The assumed maximum packet rate that a bridge can handle.
●     max-bridge-packet-rate = 50000
●     // The assumed average packet rate per participant.
●     average-participant-packet-rate-pps = 500
●     // The default assumed average stress per participant. This value is only used when a bridge does not report its
●     // own value.
●     average-participant-stress = 0.01
●     // The assumed time that an endpoint takes to start contributing fully to the load on a bridge. To avoid allocating
●     // a burst of endpoints to the same bridge, the bridge stress is adjusted by adding the number of new endpoints
●     // in the last [participant-rampup-time] multiplied by [average-participant-stress].
●     participant-rampup-interval = 20 seconds
●     // The stress level above which a bridge is considered overstressed.
●     stress-threshold = 0.8
●     // The amount of to wait before retrying using a failed bridge.
●     failure-reset-threshold = 1 minute



  

Stress Test

● https://github.com/jitsi/jitsi-meet-torture

● ./scripts/malleus.sh 
--instance-url='https://videocitofono.bida.im' --
conferences=1 --participants=20 --senders=20 --audio-
senders=20 --duration=120 --room-name-prefix=TEST\n



  

Stress Test



  

Monitoring



  

.. in progress

Grazie
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