
  

Jitsiverse of Madness 



  



  



  

Jitsi Meet
● Web Interface

– WebRTC
– React
– React Native

● Nginx



  

Jitsi Videobrigde (JVB)
● WebRTC compatible server designed to route 

video streams
● Multiplexer Audio/Video
●  DTLS-SRTP



  

Jitsi Conference Focus (Jicofo)

manages media sessions and acts as load 
balancer between each of the participants and 
the videobridge.



  

Prosody

● XMPP server used for signalling
● Authentication (local users)
● Plugins



  

Jitsi Gateway to SIP (jigasi)

server-side application that allows regular SIP 
clients to join Jitsi Meet conferences



  

Jitsi Broadcasting Infrastructure 
(jibri) 

set of tools for recording and/or streaming a 
Jitsi Meet conference that works by launching a 
Chrome instance rendered in a virtual 
framebuffer and capturing and encoding the 
output with ffmpeg.



  



  

Ports
● IN tcp/80
● IN tcp/443
● IN udp/10000
● OUT udp/443



  

Quick deploy
● Using docker-compose on 

https://github.com/jitsi/docker-jitsi-meet



  

Quicker deploy
● Ansible playbook doing everything for you:

https://git.lattuga.net/panda/jitsi-quick 
– Installs docker
– Installs and configures telegraf to send jitsi stats to influx
– Pulls non-test release of docker-jitsi-meet
– No-auth = public access
– Tested on debian11 & centos7



  

Tips & tricks
● Use the correct tag when pulling docker-jitsi-

meet: 
the default is the dev/test tag, you have to 
specify a release to use the stable one.



  

Using plugins (docker-compose)
● To add a plugin:

– In your env file add:
XMPP_MUC_MODULES=your_plugin_name

– Stop everything: docker-compose stop
– Chown 101 your plugin.lua and add it in .jitsi-meet-

cfg/prosody/prosody-plugins-custom/
– Start everything: docker-compose start



  

Quicker-deploy demo time?



  

Sizing
● For small videocalls (5ppl) you won’t need a big machine: 

1/2core 4gb ram
● Always consider the bandwidth
● Official guideline: https://jitsi.org/jitsi-videobridge-

performance-evaluation/ 
they say baremetal 2013 Xeon quad core and 16gb (?) of 
ram supports 1000 video streams at 550mbps and 20% 
cpu



  

Documentation
● It’s ok for easy deployments
● It’s lacking for more complex ones
● The last changes are more commonly found in 

forum posts instead of official docs



  

Relays (aka secure octo)
● Cascading bridges
● use ICE and DTLS/SRTP between each pair of 

bridges, so a secure network is not required. It 
uses and requires colibri websockets for the 
bridge-bridge connections 



  

● org.jitsi.videobridge.ENABLE_STATISTICS=true
● org.jitsi.videobridge.STATISTICS_TRANSPORT=muc
● org.jitsi.videobridge.STATISTICS_INTERVAL=5000
● org.jitsi.videobridge.xmpp.user.shard.HOSTNAME=videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.DOMAIN=auth.videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.USERNAME=jvb
● org.jitsi.videobridge.xmpp.user.shard.PASSWORD=vT477ggYHYU
● org.jitsi.videobridge.xmpp.user.shard.MUC_JIDS=JvbBrewery@internal.auth.videocitofono.bida.im
● org.jitsi.videobridge.xmpp.user.shard.MUC_NICKNAME=d4393752-0bd2-4273-ba7c-03a31d50c05a
● org.jitsi.videobridge.xmpp.user.shard.DISABLE_CERTIFICATE_VERIFICATION=true
● org.jitsi.videobridge.rest.jetty.port=9090
● org.jitsi.videobridge.rest.COLIBRI_WS_TLS=true
● org.jitsi.videobridge.rest.COLIBRI_WS_DOMAIN=videocitofono.bida.im:443

/etc/jitsi/videobridge/sip-communicator.properties



  

Split Strategy

● SingleBridgeSelectionStrategy: Use the least loaded bridge, do not split a 
conference between bridges (Octo).

● SplitBridgeSelectionStrategy: Use a separate bridge for each participant 
(for testing).

● RegionBasedBridgeSelectionStrategy: Attempt to put each participant in a 
bridge in their local region (i.e. use Octo for geo-location).

● IntraRegionBridgeSelectionStrategy: Use additional bridges when a 
bridge becomes overloaded (i.e. use Octo for load balancing).



  

Load average
●  max-bridge-participants = -1
●     // The assumed maximum packet rate that a bridge can handle.
●     max-bridge-packet-rate = 50000
●     // The assumed average packet rate per participant.
●     average-participant-packet-rate-pps = 500
●     // The default assumed average stress per participant. This value is only used when a bridge does not report its
●     // own value.
●     average-participant-stress = 0.01
●     // The assumed time that an endpoint takes to start contributing fully to the load on a bridge. To avoid allocating
●     // a burst of endpoints to the same bridge, the bridge stress is adjusted by adding the number of new endpoints
●     // in the last [participant-rampup-time] multiplied by [average-participant-stress].
●     participant-rampup-interval = 20 seconds
●     // The stress level above which a bridge is considered overstressed.
●     stress-threshold = 0.8
●     // The amount of to wait before retrying using a failed bridge.
●     failure-reset-threshold = 1 minute



  

Stress Test

● https://github.com/jitsi/jitsi-meet-torture

● ./scripts/malleus.sh 
--instance-url='https://videocitofono.bida.im' --
conferences=1 --participants=20 --senders=20 --audio-
senders=20 --duration=120 --room-name-prefix=TEST\n



  

Stress Test



  

Monitoring



  

.. in progress

Grazie


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

